skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Zhaowu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microorganisms can efficiently navigate in anisotropic complex fluids, but the precise swimming mechanisms remain largely unexplored. Their dynamics are determined by the interplay between multiple effects, including the fluid's orientation order, swimmer's undulatory gait, and the finite length. Here we extend the numerical study of the two-dimensional undulatory motions of a flexible swimmer in lyotropic liquid-crystalline polymers (LCPs) by Lin et al. (2021) to the scenarios of arbitrary swimming directions with respect to the nematic director. The swimmer is modeled as a nearly inextensible yet flexible fiber with imposed traveling-wave like actuation. We investigate the orientation-dependent swimming behaviors in nematic LCPs for an infinite long sheet (i.e., Taylor's swimming sheet model) and finite-length swimmers. We demonstrate that the swimmer must be sufficiently stiff to produce undulatory deformations to gain net motions. Moreover, a motile finite-length swimmer can reorient itself to swim parallel with the nematic director, due to a net body torque arising from the asymmetric distribution of the polymer force along the body. 
    more » « less
  2. null (Ed.)
    Microorganisms may exhibit rich swimming behaviours in anisotropic fluids, such as liquid crystals, which have direction-dependent physical and rheological properties. Here we construct a two-dimensional computation model to study the undulatory swimming mechanisms of microswimmers in a solution of rigid, rodlike liquid crystal polymers. We describe the fluid phase using Doi's $$Q$$ -tensor model, and treat the swimmer as a finite-length flexible fibre with imposed propagating travelling waves on the body curvature. The fluid–structure interactions are resolved via an immersed boundary method. Compared with the swimming dynamics in Newtonian fluids, we observe non-Newtonian behaviours that feature both enhanced and retarded swimming motions in lyotropic liquid crystal polymers. We reveal the propulsion mechanism by analysing the near-body flow fields and polymeric force distributions, together with asymptotic analysis for an idealized model of Taylor's swimming sheet. 
    more » « less